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ABSTRACT

This study compared the classification performance among parametric discriminant analysis,

nonparametric discriminant analysis, and logistic regession in a two-group classification application.

Field data from an organizational survey was analyzed and bootstrapped for additional exploration.

The data were observed to depart from multivariate normality; neither the group sizes in the sample

nor the covariance matrices of the two groups were equal. A crossed design of classification function

by prior probability was implemented over 244 bootstrap samples. The classification error rates for

each group and the total sample were gathered for each cell of the design matrix. The major findings

of this study are: 1) Nonparametric discriminant functions and logistic regression performed below

expectations from theory; 2) the choice of prior probabilities influenced the classification

performance for the smaller and the larger goup, but not for the total sample; and 3) minimization of

error rates for one group implied an increment in the error rate for the other group, or vice versa. The

findings do not demonstrate the expected theoretical strength of nonparametric discriminant functions

when applied to data with nonnormality and unequal covariance matrices. No consistent superiority

was observed in logistic regression and quadratic discriminant function over the linear discriminant

function. This indicates a more complicated situation than that portrayed in previous studies on the

applications of discriminant functions and logistic regression for classification purpose.
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Discriminant analysis and logistic regression methods have been frequently used in

educational research either to classify individuals or organizations into different groups or to predict

their gioup membership using a set of measures. Although the two methods appear to have the same

utility, they are two different models. Generally speaking, discriminant analysis is part of the general

linear model (Knapp, 1978; Thompson, 1991), whereas logistic regression models the nonlinear

probabilistic function of a binary dependent variable, using a single or a set of independent variables.

Readers who are not yet familiar with these two methods may wish to go over the section of the brief

review of two methods in Fan and Wang's (1998) paper.

'Both parametric and nonparametric models are can be used in discriminant analysis. The

studies comparing the performance between discriminant analysis and logistic regression have

typically focused on parametric discriminant analysis and logistic regression (Dattalo, 1994; Fan and

Wang, 1998; Harrell & Lee, 1985; Wilson and Hardgrave, 1995). Using parametric discriminant

analysis requires three assumptions: multivariate normal distribution in each group, equal covariance

structure in each group, and reasonably large sample size (Johnson and Wichern, 1988). When these

assumptions are met, parametric discriminant analysis can be expressed in the same form as logistic

regression (Clearly and Angel, 1984; Harrell & Lee, 1985). Empirical investigations using real data

and simulation data have also reported that the two methodologies give similar results when the

assumptions are basically met (Fan and Wang, 1998; Meshbane and Morris, 1996).

In Educational research, situation often arises when a desired distribution of data such as

normality is not possible, or the group covariance structures are different. Where this situation occurs,

nonparametric discriminant analysis should be a more logical choice since it does not require

distributional assumptions (SAS, 1988). One particular nonparametric discriminant method used in

this study is the k-nearest-neighbor method. This method uses the pooled covariance matrix to

calculate the Mahalanobis distances and generates a classification criterion. The choice of k is said to

be relatively uncritical; one can practically try different k values and selects the one that yields the
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best classification result (Hand, 1982; SAS Institute, 1988; Silverman, 1986). For some unknown

reasons, very little is found in literature that has compared the performance of nonparametric

discriminant analysis with that of parametric discriminant analysis or logistic regression.

The purpose of this study was to use classification error, rates as the criteria to compare the

classification performance among parametric discriminant analysis, nonparametric discriminant

analysis, and logistic regression for a two-group classification problem.

Methods

Design

A crossed two-factor design was implemented in analyzing the classification error rates for

the total sample and for each of the two groups. This design permits a systematical assessment of the

contribution by each factor to reducing the explained variance of the classification error rates. The

first factor is the classification method that consists of parametric discriminant analysis,

nonparametric discriminant analysis, and logistic regression. For parametric discriminant analysis,

both a linear function and a quadratic function are included. Three k values (4, 5, 6) are used in the k-

nearest-neighbor method in the nonparametric discriminant analysis. Therefore, the factor of

classification method actually contains six levels: linear discriminant analysis, quadratic discriminant

analysis,

4-nearest-neighbor method, 5-nearest-neighbor method, 6-nearest-neighbor method, and logistic

regression.

The second factor is the prior probability (two levels: equal priors, and priors estimated from

the sample). Priors are used to help derive a reasonable classification rule or criterion. When prior

probabilities are unknown, they are set to equal (.50 to .50). In practice, the ratio of the two group

sizes is often taken as the ratio of the their respective populations. This ration is then used as priors in

finding the classification rule. As is described later, the data for this study contains two groups and

their sizes are approximately .30 to .70. Therefore, these two priors (.50 to .50 and .30 to .70) were
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adopted in the design.

Given the nature of this study and for simplicity, costs of misclassification were assumed to

be equal in discriminant analysis. Also, sample size was not manipulated in the design; the achieved

sample size (n = 244) from the field was used instead. Model fitting was performed over 244

bootstrap samples. The bootstrap procedure was included to evaluate generalizability of the results

across different configurations of subjects (Thompson,-1993).

Data Source

The data for this study was taken from an organizational study in an international project in

which human resources managers in various organizations in a North American country were

surveyed. The organizations were a priori classified, using certain benchmarks, as high performance

organizations or otherwise. The sample was not strictly a random sample of the two types of

organizations in that country due to voluntary participation even though the initial sampling plan was

meant to select a random sample. The achieved sample contained responses from 244 organizations.

For this study, all the 244 organizations were included. Seventy-one (29.1%) were high

performance organizations, 171 (70.9%) were not. The knowledge that an organization was either a

high performance one or otherwise was used to define the criterion, or dependent variable. Eight

predictor variables were constructed from the responses to the survey items. In this data, the number

of variables, the distributions of the variables (Table 1), and the sample size are close to those

frequently found in a typical classification studies (Meshbane and Morris, 1996; Huberty and Curry,

1978). The distributions of the variables in Table 1 and the covariance matrices in Table 2 suggest the

violation of the assumptions, such as multivariate normality of predictors and equal covariance

matrices in the group populations, that are often invoked in classification analyses (Johnson and

Wichern, 1988).

In preprocessing the data, the eight predictor variables were standardized to reduce their

dispersion resulting from the unequal number of items in each survey section. No theoretical reason
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existed to weight the contribution of each item differently.

Insert Table 1 and Table 2 about here

Following some common advise in classification theory. (Jonhson and Wichern, 1988), the

assumptions of multivariate normality and equal covariance structure of the two groups were

assessed. Multivariate normality was assessed by evaluating the distribution of each variable first. It

is known that multivariate normality is not possible if univariate normality is not observed in the

distribution of each individual variable. In Table 1, under skewness and kurtosis, predictors in both

groups (called Class 1 for the high performance group, and Class 2 for the other group) exhibit

varying degees of departure from the expected values (Os) for the normal distribution. The skewness

ranged from -0.21 to 2.57 and the kurtosis ranged from -1.36 to 6.35. Across most predictors, values

of the skewness and kurtosis for class 1 are relatively closer to those for the normal distribution than

those for class 2. However, Table 1 also indicates that one predictor, xl, in Class 2 shows the

greatest departure from normality.

Table 2 shows that the variances of the predictors in Class 1 were larger than those in Class 2.

The median difference between the variances of the two classes is about 37% and this indicates some

overlapping at the tails of the two class distributions. The defgee of inequality of the class covariance

matrices was evaluated using the Bartlett-Box test of equality of population covariance matrices

(Tatsuoka, 1988). The data supported the rejection of the null hypothesis of equal population

covariance matrices (chi-square = 90.94; df=36, p<0.05).

Bootstrap samples and cross-validation schema

Each condition of the design was replicated over 244 random configurations of cases. Each

configuration represents a sample drawn with replacement from the original data set. The cases from

each bootstrap sample were randomly assigned to a training and a testing sample using the 2/3 - 1/3
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rule as specified by the general cross-validation schema (Weiss and Kulikowski, 1991). While the

leaving-one-out approach is a preferable technique (Lachenbruch, 1967; Huberty, 1994; Johnson and

Wichem, 1988), it is not only computationally expensive, but may also produce estimates oferror

rate with high variance for small samples. Therefore, only the general cross-validation schema was

chosen.

The training data set was defined to calibrate the functions, and the testing data set was reserved

strictly for testing the classification rule derived from the training data. Using independent testing

samples may reduce the upward bias of classification error rates that would otherwise be present if

cross-validation had also used the training samples (Huberty and Curry, 1978; and Meshbane and

Morris, 1996). The above procedure was implemented using SAS interactive matrix language (IML).

Model fitting

The parametric and nonparametric discriminant functions and logistic regression function

were fit to each training sample using the two prior probabilities. The parametric discriminant

functions were fit using SAS PROC DISCRIM and the linear and quadratic classification rules. The

nonparametric discriminant function was fit by requesting the nonparametric method in the SAS

PROC DISCRIM procedure, and invoked three classification rules, i.e., the 4th, 5th, and 6th nearest

neighbor rules. Finally, the logistic regression function was fit with SAS PROC LOGISTIC

procedure and the prior probability for Class 1 (the high performance goup) was specified for the

classification.

The classification error rates for each combination of the levels of the two factors were

estimated from the testing data. For both parametric and nonparametric discriminant functions, SAS

PROC DISCRIM allows choosing a data set as the testing sample to cross-validate error rates, but

this flexibility is not available in PROC LOGISTIC. Cross-validation error rates for the logistic

functions were obtained following these four steps. First, we estimated logistic regression parameters

from a merged data set (i.e., training and testing data sets) in which the testing portion of the data was
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copied into another variable and replaced with missing values. Second, we got an estimate of the

probability of observing Class 1 given the set of predictors, for each case in the testing data. Third,

Class 1 prior probability was used to determine whether observations in the testing set belong Class 1

or Class 2. Fourth, we cross-tabulated the predicted class and the observed class. A classification

error occurred when there was a mismatch between the expected class and a predicted class. The

classification error rates for each class and the total were collected for later analyses.

Results and Discussions

Comparing predictive classification error rates among models

Tables 3, 4, and 5 summarize the classification error rates for Class 1 (the smaller group),

Class 2 (the larger group), and the total (both groups). The marginal distributions of the classification

functions in Table 3 show that, independent of the size of the prior probability, the error rates fall in

three groups. The lowest error rate group contains only the logistic regression with a mean error rate

of 0.33. The second group includes the two parametric functions, with the mean error rates of 0.44

and 0.40 for the linear and quadratic functions, respectively. The last group has the k-nearest-

neighbor nonparametric discriminant methods.. These methods yielded the largest mean error rates,

ranging from 0.45 to 0.49.

The marginal error rates in Table 3 also indicate that predicting Class 1 membership using the

set of 8 predictor variables performed better than chance. For example, in a training sample, the

average proportions of Class 1 and Class 2 are 0.30 and 0.70. By pure chance, one would expect to

predict Class 1 membership with a 30% success rate, which means a 70% error rate. None of the

marginal error rates in Table 3 is larger than 50%.

The results of predicting Class 2 membership in Table 4 portray a somewhat different pattern

in terms of the marginal error rate distributions of the three methods. The lowest error rate group

includes the two parametric discriminant functions. The nonparametric method group has the medium

error rate; the highest error rate is from the logistic regression function. As mentioned above, the
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expected error rate in predicting Class 2 membership would be 30%. Again, none of the observed

marginal error rates is greater than 30%, although the logistic regression error rate (28%) is very

close to the expected error rate. The differences in the marginal error rates in Table 3 and Table show

that the loss of classification accuracy for one class can turn into a gain in the classification accuracy

for the other class. For example, the logistic regression did the worst in predicting Class 2

membership, but had the best accuracy in predicting Class 1 membership. Similar results were also

reported by Fan and Wang (1998). Finally, in Table 5, all the classification functions are found to

have performed much alike in terms of the marginal error rates for predicting both Class 1 and Class.

Insert Tables 3, 4, and 5 about here

Comparing predictive classification error rates between the two priors

The bottom rows in Table 3, Table 4, and Table 5 give the marginal distributions of the

predictive classification error rates for Class 1, Class 2, and both classes, respectively, using two prior

probabilities (.50 and .30 for Class 1). The results suggest that the size of a prior may affect

classification error rates for predicting each class, but not for predicting both classes. In Table 3, the

error rate using a prior of .50 was smaller than that using a prior of .30. This indicates a positive

effect of choosing a prior probability around the middle point of the distribution. However, the

logistic regression error rate was in fact smaller when using .30 instead of .50 for the prior

probability. This suggests that, when information about group sizes is used to estimate priors, the

logistic regression method may do a better job than both the parametric and nonparametric

discriminant functions. The opposite is true in predicting Class 2 where the two discriminant

functions outperformed the logistic regession method when the sample proportion of Class 2 (.70)

was used as the prior (Table 4).

The decision between using equal priors or using sample information to estimate priors seems

to be less relevant when researchers are concerned with the overall predictive accuracy. In Table 5,
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the marginal error rates are the same for the two prior probabilities.

When priors are unknown, there are two approaches that researchers often utilize. The first

approach is based on the concept of sampling and advocates the use of proportions of each category

as estimates of the population priors. The second approach is less systematic and it requires to

assume that the population priors are the same for each class. There is no total agreement on which

one should be used (Lindeman, Merenda, and Gold, 1980). Most of the literature supports using

equal priors except when there is enough confidence in the accuracy of prior probabilities estimated

from sample data (Huberty, 1994; Johnson and Wichern, 1988).

The results presented above show that a wrong choice of prior may unduly increase the error

rate of most functions. In this study, for example, when the interest is in classifying members of the

smaller group (i.e., Class 1), choosing a prior proportional to the sample size generally increased

error rates. This did not, however, apply to the logistic regression method. This finding may have

some practical significance in educational, behavioral, and psychological research where correct

identification of a small-size special population is very important (Fan & Wang, 1998). On the other

hand, when predicting Class 2 membership, using equal priors generally reduces error rates. Finally,

choice of priors does not affect the overall predictive accuracy. Therefore, when the concern is the

correct classification of members of both classes, it makes little difference to assume equal priors or

to estimate them from the sample.

Comparing Predictive Classification Error Rates Across Functions and Priors

Theoretically, the classification results from the nonparametric discriminant functions and the

logistic regression function should be less sensitive to departures from normality and inequality of

covariance matrices. For the parametric discriminant functions, normality is required of both linear

and quadratic functions. Equality of covariance is, however, not necessary for the quadratic

discriminant function (Anderson, 1984; Huberty, 1994; Johnson and Wichern, 1988). With this in

mind, the following situations can be expected.
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First, when prior probabilities are assumed to be equal, the relative efficiency of the

parametric and nonparametric discriminant functions and logistic regression function would be alike.

However, when data does not satisfy various assumptions, the quadratic function may outperform the

linear discriminant function and, in turn, the nonparametric discriminant (i.e., the k-nearest-neighbor)

method and logistic regression function may do better than the parametric quadratic discriminant

function. Between the nonparametric discriminant function and the logistic regression function, little

is found in literature that compares their performances in classification. It is therefore difficult to set

expectations about their performance comparison. Intuitively, the nonparametric discriminant method

may have an edge over the logistic regression, because the nonparametric rule assigns observations

based on their closeness to groups of observations and requires no ordering of cases.

Second, the expectations given above also stand when prior probabilities are estimated from

the sample proportions of the groups and the proportions are not .50. In addition, the superiority of

the logistic regression over parametric discriminant functions would be more evident. Namely, the

logistic regression function is expected to perform relatively better than the linear and quadratic

discriminant functions because the logistic regression is believed to be more precise in modeling the

extreme regions in a probabilistic function (Hosmer, 1989; Huberty, 1994; Dattalo, 1994).

The results in Table 3 support some, but not all of the expectations just mentioned. What is

surprising is that the logistic regression performed below expectations and had the largest error rate

of all the functions. This may be due to the overlapping of the two classes in the region where the

logistic regression probabilistic function reaches 0.5. It is also noticed that, when using the sample

proportion as the prior, the quadratic discriminant function performed relatively better than the linear

discriminant function, but both had higher error rates than the logistic regression method. The

nonparametric discriminant functions performed very poorly when compared with both parametric

discriminant functions and the logistic regression.

Table 6 presents the percentage improvement (or deterioration) of the classification error rates
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for each function when changing priors from equal to sample size proportional. When decisions are

targeted to classify members of the smaller group (i.e., Class 1), it is observed that, except for the

logistic regression, the classification error rates increased to different degrees for the other functions.

The k-nearest-neighbor methods were found to be most sensitive to changes in priors. The next most

sensitive function was the linear discriminant whose error rate went up about 67%. The similar poor

performance by the nonparametric and linear discriminant functions may be due to the use of pooled

covariance in estimation of the distance. Because the current data set involves classes with different

covariance matrices, pooling the covariance ignored this fact when computing the Malahanobis'

distance, thus probably biasing the estimates of distance.

In Table 6, when classifying members of the smaller class (i.e., Class 1), the error rate

increased about 25% for the quadratic discriminant function but decreased about 39% for the logistic

regression classification error rate. This difference supports the expectation about the superiority of

the logistic regression in classifying observations in the extreme regions of a probabilistic function.

The other results in Table 6 show agreement with the discussions given earlier on Tables 3, 4, and 5

with regard to the performances of the different classification methods.

Insert Table 6 about here

Sources of variation in the classification error rates

To summarize the contribution of the factors considered in this study on the category error

rate and overall error rate, the variance of error rates was partitioned using the analysis of variance

method in a two-by-two orthogonal design. Table 7 presents the results of this analysis.

For Class 1 (the smaller group), it is observed that the design factors accounted for 50% of the

variation in the classification error rate. Of the 50% variance, the prior probability contributed the

21.11%. The classification function contributed only 8.63%. The interaction between the

discrimination method and the prior probability contributed to the reduction of 20.22% of the
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variance in the classification error rate. This agrees with the findings discussed earlier that the

relative performances of the function is related to the prior sizes. For Class 2, the larger group, the

design factors explained 46.20% of the variance in the error rate. The interaction between the

discriminant function and the prior probability also accounted for 28.5% of the variance out of the

total 46.20% of the variance for Class 2. For both classes, only the interaction between prior

probability and classification function explained most of the variance in the error rate. As was

mentioned earlier, the prior probability contributed little to the explained variance in the total error

rate.

Insert table 7 about here

Limitations of this study and suggestions for future research

This research has some limitations. First, the use of secondary data did not allow us to

separate the effect of nonnormality from inequality of covariance. Future studies using either

experimental data or simulated data may help solve this problem. Second, the size of the data set and

the method chosen to estimate classification error rate may affect the performance of the logistic

regression. Particularly, the chosen method removed cases from the estimation and then used them in

assessing the predictive accuracy of the classification methods. With moderate sample sizes, this

method leaves one with either insufficient number of cases for the training sample or for the testing

sample. Third, the efficiency of the parameter estimation method that the logistic regression utilizes

is based on large sample sizes. The size of the samples might influence the accuracy of the estimates

of the classification error rates for the logistic regression. It is desirable to replicate this study using

larger sample sizes. Finally, the quality of the predictor variables could be another source of interest

to control in other studies.
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Summary and Conclusions

This study examined the effects of parametric (linear and quadratic discriminant functions),

nonparametric discriminant functions, and logistic regression function on their classification error

rates for a two-group classification problem. To evaluate stability of classification results, 244

bootstrap samples were drawn from the original sample. For each combination of prior probability

and classification functions, classification rules were estimated using a set of training samples. The

cross-validation approach used a fixed percentage of cases for the training and the testing samples.

Classification error rates for each class as well as for both classes were analyzed.

The following findings were obtained from this study:

1. The nonparametric discriminant function did not perform as expected and, in several cases, it

performed worse than the parametric discriminant functions. The superiority of the parametric

discriminant function over the nonparametric function was more noticeable when priors were

estimated from sample sizes. However, when equal priors were used in predicting the smaller

class (Class 1), parametric and nonparametric discriminant functions performed more or less

alike. Given the complexity in application, the nonparametric discriminant function used in this

study (k-nearest neighbor method) might not be a good alternative for use with nonnormal data

and unequal group covariance matrices in a two-group classification problem .

2. The superiority of the logistic regression was not impressive in this study. The logistic reigession

and the nonparametric discriminant functions performed somewhat similarly under certain

combination of prior probabilities and targeted class. Under other combinations, the logistic

regression outperformed nonparametric discriminant function.

3. Classification error rates for linear and quadratic functions were relatively close. In several

design cells, however, the linear classification rule yielded smaller error rates than the quadratic

rule..

4. The results from this study helped to realize the complexity of the dynamics in the classification

15



15

process. Classification literature typically focuses on model assumptions (Johnson and Wichem,

1988). However, sizes of prior probabilities and a priori selection of a class are two additional

factors to be considered when evaluating the performance of parametric classification methods

and the logistic regression (Fang and Wang, 1998; Huberty, 1994; Press and Wilson, 1978;

Wilson and Hargrave, 1995).
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Table 1

Descriptive Statistics of the Eight Predictor Variables.

Class 1 (n = 71) Class 2 (n = 173)

xl x2 x3 x4 x5 x6 x7 x8 x 1 x2 x3 x4 x5 x6

Mean -0.24 0.47 0.67 0.51 0.51 0.49 0.55 0.41 -0.60 -0.19 -0.27 -0.21 -0.21 -0.20 -0.23 -0.17

SD 1.03 1.04 1.07 1 .01 0.91 1.17 1.02 1.09 0.64 0.92 0.83 0.92 0.96 0.85 0.90 0.91

Skewness 0.65 -0.16 0.89 0.38 0.18 0.31 -0.21 0.17 2.57 0.78 1.10 0.40 0.35 0.46 0.43 1.19

Kurtosis -1.28 -1.29 1.03 0.24 0.64 -0.51 -0.21 -1.36 6.35 -0.69 0.84 -0.62 -0.42 -0.49 -0.60 0.74
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Table 2

Covariance Matrices of the Eight Predictor Variables (n = 244)

xl x2 x3 x4 x5 x6 x7 x8

1.060 0.653 0.360 0.442 0.299 0.404 0.454 0.763

0.653 1.080 0.320 0.680 0.389 0.484 0.548 0.610

0.360 0.320 1.140 0.495 0.357 0.315 0.320

0.442 0.680 0.495 1.020 0.486 0.639 0.493 0.321

0.299 0.389 0.357 0.486 0.819 0.638 0.460 0.324

0.404 0.484 0.357 0.639 0.638 1.369 0.634 0.211

0.454 0.548 0.315 0.493 0.460 0.634 1.036 0.337

0.753 0.610 0.320 0.321 0.324 0.211 0.337 1.203

Class 1

Class 2

xl x2 x3 x4 x5 x6 x7 x8

0.416 0.298 0.248 0.243 0.258 0.229 0.255 0.421

0.298 0.843 0.407 0.369. 0.385 0.338 0.374 0.355

0.248 0.407 0.686 0.342 0.312 0.239 0.303 0.270

0.243 0.369 0.342 0.844 0.405 0.267 0.339 0.244

0.258 0.385 0.312 0.405 0.927 0.386 0.445 0.352

0.229 0.338 0.239 0.267 0.386 0.717 0.384 0.200

0.255 0.374 0.303 0.339 0.445 0.384 0.817 0.310

0.421 0.355 0.270 0.244 0.352 0.200 0.310 0.826
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Table 3

Classification Error Rates for Predicting Class 1 (the smaller goup)

Function

Priors

Marginal
Equal Proportional
(0.50) (0.30)

Parametric Discriminant

Linear 0.33 (0.12) 0.55 (0.13) 0.44 (0.17)

Quadratic 0.36 (0.12) 0.45 (0.13) 0.40 (0.13)

Nonparametric Disarm.

4 nearest neighbor 0.35 (0.13) 0.63 (0.12) 0.49 (0.19)

5 nearest neighbor 0.32 (0.12) 0.57 (0.14) 0.45 (0.18)

6 nearest neighbor 0.31 (0.12) 0.65 (0.13) 0.48 (0.21)

Logistic Regression 0.41 (0.13) 0.25 (0.15) 0.33 (0.16)

Marginal 0.35 (0.13) 0.51 (0.19)

Note: Each table entry is the mean classification error rate. The standard deviation of the
classification error rate is in the parentheses. Classification error rates are based on 244 random
samples with replacement from a finite population.

0
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Table 4

Classification Error Rates for Predicting Class 2 (the larger group)

Method (M)

Priors

Marginal
Equal Proportional
(0.50) (0.70)

Parametric Discriminant

Linear 0.23 (0.07) 0.12 (0.06) 0.18 (0.08)

Quadratic 0.21 (0.07) 0.15 (0.06) 0.18 (0.07)

Nonparametric Disarm.

4 nearest neighbor 0.24 (0.07) 0.18 (0.07) 0.21 (0.07)

5 nearest neighbor 0.27 (0.09) 0.14 (0.06) 0.20 (0.10)

6 nearest neighbor 0.28 (0.09) 0.16 (0.07) 0.22 (0.10)

Logistic Regression 0.19 (0.10) 0.38 (0.10) 0.28 (0.14)

Marginal 0.24 (0.09) 0.19 (0.11)

Note: Each table entry is the mean classification error rate. The standard deviation of the
classification error rate is in the parentheses. Classification error rates are based on 244 random
samples with replacement from a finite population.

1 1
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Table 5

Classification Error Rates For Predicting Both Classes

Method (M)

Priors

Marginal
Equal

(0.50 : .50)
Proportional
(0.30 : 0.70)

Parametric Discriminant

Linear 0.28 (0.06) 0.25 (0.06) 0.26 (0.07)

Quadratic 0.29 (0.07) 0.24 (0.05) 0.26 (0.06)

Nonparametric Disarm.

4 nearest neighbor 0.29 (0.07) 0.31 (0.06) 0.30 (0.06)

5 nearest neighbor 0.29 (0.06) 0.26 (0.05) 0.28 (0.06)

6 nearest neighbor 0.29 (0.06) 0.30 (0.05) 0.30 (0.06)

Logistic Reigession 0.24 (0.6) 0.34 (0.07) 0.29 (0.08)

Marginal 0.28 (0.09) 0.28 (0.07)

Note: Each table entry is the mean classification error rate. The standard deviation of the
classification error rate is in the parentheses. Classification error rates are based on 244 random
samples with replacement from a finite population.
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Table 6

Percentage of Improvement (or Deterioration) on the
Classification Error Rates of Six Functions when
Changing from Equal to Proportional Priors

Classes

Function Class 1 Class 2 Both

Parametric Discriminant

Linear -67.0 48.0 11.0

Quadratic -25.0 29.0 17.0

Nonparametric Disc.

4 nearest neighbor -80.0 25.0 -7.0

5 nearest neighbor -78.0 48.0 10.3

6 nearest neighbor -110.0 43.0 -3.0

Logistic Regression 39.0 -100.0 -42.0

Table 7

Percentage of Variance Partitioning for Classification Error Rates

Classes

Source Class 1 Class 2 Both

Total R-sq. 50.0 46.2 18.7

Prior Probability (P) 21.1 5.5 0.0

Function (F) 8.6 12.2 5.9

P * F 20.3 28.5 12.8

Note: table entries are the ETA squared, which was computed by the ratio of each source sum of
squares and the total sum of squares.
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